Mechanisms whereby insulin increases diacylglycerol in BC3H-1 myocytes.

نویسندگان

  • R V Farese
  • D R Cooper
  • T S Konda
  • G Nair
  • M L Standaert
  • J S Davis
  • R J Pollet
چکیده

We previously suggested that insulin increases diacylglycerol (DAG) in BC3H-1 myocytes, both by increases in synthesis de novo of phosphatidic acid (PA) and by hydrolysis of non-inositol-containing phospholipids, such as phosphatidylcholine (PC) and phosphatidylethanolamine (PE). We have now evaluated these insulin effects more thoroughly, and several potential mechanisms for their induction. In studies of the effect on PA synthesis de novo, insulin stimulated [2-3H]glycerol incorporation into PA, DAG, PC/PE and total glycerolipids of BC3H-1 myocytes, regardless of whether insulin was added simultaneously with, or after 2 h or 3 or 10 days of prelabelling with, [2-3H]glycerol. In prelabelled cells, time-related changes in [2-3H]glycerol labelling of DAG correlated well with increases in DAG content: both were maximal in 30-60 s and persisted for 20-30 min. [2-3H]Glycerol labelling of glycerol 3-phosphate, on the other hand, was decreased by insulin, presumably reflecting increased utilization for PA synthesis. Glycerol 3-phosphate concentrations were 0.36 and 0.38 mM before and 1 min after insulin treatment, and insulin effects could not be explained by increases in glycerol 3-phosphate specific radioactivity. In addition to that of [2-3H]glycerol, insulin increased [U-14C]glucose and [1,2,3-3H]glycerol incorporation into DAG and other glycerolipids. Effects of insulin on [2-3H]glycerol incorporation into DAG and other glycerolipids were half-maximal and maximal at 2 nM- and 20 nM-insulin respectively, and were not dependent on glucose concentration in the medium, extracellular Ca2+ or protein synthesis. Despite good correlation between [3H]DAG and DAG content, calculated increases in DAG content from glycerol 3-phosphate specific radioactivity (i.e. via the pathway of PA synthesis de novo) could account for only 15-30% of the observed increases in DAG content. In addition to increases in [3H]glycerol labelling of PC/PE, insulin rapidly (within 30 s) increased PC/PE labelling by [3H]arachidonic acid, [3H]myristic acid, and [14C]choline. Phenylephrine, ionophore A23187 and phorbol esters did not increase [2-3H]glycerol incorporation into DAG or other glycerolipids in 2-h-prelabelling experiments; thus activation of the phospholipase C which hydrolyses phosphatidylinositol, its mono- and bis-phosphate, Ca2+ mobilization, and protein kinase C activation, appear to be ruled out as mechanisms to explain the insulin effect on synthesis de novo of PA, DAG and PC.(ABSTRACT TRUNCATED AT 400 WORDS)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of insulin and phorbol esters on MARCKS (myristoylated alanine-rich C-kinase substrate) phosphorylation (and other parameters of protein kinase C activation) in rat adipocytes, rat soleus muscle and BC3H-1 myocytes.

To evaluate the question of whether or not insulin activates protein kinase C (PKC), we compared the effects of insulin and phorbol esters on the phosphorylation of the PKC substrate, i.e. myristoylated alanine-rich C-kinase substrate (MARCKS). In rat adipocytes, rat soleus muscle and BC3H-1 myocytes, maximally effective concentrations of insulin and phorbol esters provoked comparable, rapid, 2...

متن کامل

Pertussis toxin treatment attenuates some effects of insulin in BC3H-1 murine myocytes.

The effects of pertussis toxin (PT) treatment on insulin-stimulated myristoyl-diacylglycerol (DAG) generation, hexose transport, and thymidine incorporation were studied in differentiated BC3H-1 myocytes. Insulin treatment caused a biphasic increase in myristoyl-DAG production which was abolished in myocytes treated with PT. There was no effect of PT treatment on basal (nonstimulated) myristoyl...

متن کامل

Insulin provokes co-ordinated increases in the synthesis of phosphatidylinositol, phosphatidylinositol phosphates and the phosphatidylinositol-glycan in BC3H-1 myocytes.

BC3H-1 myocytes were cultured in the presence of [3H]inositol or [3H]glucosamine during their entire growth cycle to ensure that all lipids containing inositol and glucosamine were labelled to isotopic equilibrium or maximal specific radioactivity. After such labelling, a lipid (or group of lipids), which was labelled with both inositol and glucosamine, was observed to migrate between phosphati...

متن کامل

Insulin-induced glycerolipid mediators and the stimulation of glucose transport in BC3H-1 myocytes.

We have previously demonstrated that insulin stimulates glycerolipid synthesis and phospholipid hydrolysis in BC3H-1 myocytes, resulting in the generation of membrane diacylglycerol, a known cellular mediator. This led us to the original proposal that diacylglycerol may contribute to the mediation of insulin action, especially stimulation of glucose transport. The fact that agents such as pheny...

متن کامل

Studies of in vivo phosphorylated proteins in BC3H-1 myocytes suggest that protein kinase C is involved in insulin action.

Insulin (10 and 100 nM) and phorbol esters increased the phosphorylation of several proteins, including 40, 47 and 80 kDa proteins, which are markers for protein kinase C activation. Insulin effects were evident at 2 min and increased over 20 min. These findings suggest that insulin activates protein kinase C in BC3H-1 myocytes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 256 1  شماره 

صفحات  -

تاریخ انتشار 1988